Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(23): 11091-11098, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37967168

RESUMO

Gelatin nanoparticles (GNPs) have been widely studied for a plethora of biomedical applications, but their formation mechanism remains poorly understood, which precludes precise control over their physicochemical properties. This leads to time-consuming parameter adjustments without a fundamental grasp of the underlying mechanism. Here, we analyze and visualize in a time-resolved manner the mechanism by which GNPs are formed during desolvation of gelatin as a function of gelatin molecular weight and type of desolvating agent. Through various analytical and imaging techniques, we unveil a multistage process that is initiated by the formation of primary particles that are ∼18 nm in diameter (wet state). These primary particles subsequently assemble into colloidally stable GNPs with a raspberry-like structure and a hydrodynamic diameter of ∼300 nm. Our results create a basic understanding of the formation mechanism of gelatin nanoparticles, which opens new opportunities for precisely tuning their physicochemical and biofunctional properties.

2.
Commun Biol ; 6(1): 510, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169904

RESUMO

Cryo-correlative light and electron microscopy (cryoCLEM) is a powerful strategy to high resolution imaging in the unperturbed hydrated state. In this approach fluorescence microscopy aids localizing the area of interest, and cryogenic focused ion beam/scanning electron microscopy (cryoFIB/SEM) allows preparation of thin cryo-lamellae for cryoET. However, the current method cannot be accurately applied on bulky (3D) samples such as tissues and organoids. 3D cryo-correlative imaging of large volumes is needed to close the resolution gap between cryo-light microscopy and cryoET, placing sub-nanometer observations in a larger biological context. Currently technological hurdles render 3D cryoCLEM an unexplored approach. Here we demonstrate a cryoCLEM workflow for tissues, correlating cryo-Airyscan confocal microscopy with 3D cryoFIB/SEM volume imaging. Accurate correlation is achieved by imprinting a FinderTOP pattern in the sample surface during high pressure freezing, and allows precise targeting for cryoFIB/SEM volume imaging.


Assuntos
Microscopia Eletrônica , Microscopia de Fluorescência/métodos , Microscopia Crioeletrônica/métodos , Microscopia Confocal , Congelamento
3.
Acta Biomater ; 120: 12-19, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32565371

RESUMO

Many biological structures use liquid crystals as self-organizing templates for their formation. We review and analyse evidence that the crossed-lamellar biomineral microstructure of mollusc shells may be formed from such a liquid-crystal precursor. STATEMENT OF SIGNIFICANCE: Many biological structures use liquid crystals as self-organizing templates for their formation. We review and analyse evidence that the crossed-lamellar biomineral microstructure of mollusc shells may be formed from such a liquid-crystal precursor.


Assuntos
Exoesqueleto , Cristais Líquidos , Animais , Moluscos
4.
Sci Rep ; 10(1): 16784, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033294

RESUMO

The calcite grains forming the wall plates of the giant barnacle Austramegabalanus psittacus have a distinctive surface roughness made of variously sized crystalline nanoprotrusions covered by extremely thin amorphous pellicles. This biphase (crystalline-amorphous) structure also penetrates through the crystal's interiors, forming a web-like structure. Nanoprotrusions very frequently elongate following directions related to the crystallographic structure of calcite, in particular, the <- 441> directions, which are the strongest periodic bond chains (PBCs) in calcite. We propose that the formation of elongated nanoprotrusions happens during the crystallization of calcite from a precursor amorphous calcium carbonate (ACC). This is because biomolecules integrated within the ACC are expelled from such PBCs due to the force of crystallization, with the consequent formation of uninterrupted crystalline nanorods. Expelled biomolecules accumulate in adjacent regions, thereby stabilizing small pellicle-like volumes of ACC. With growth, such pellicles become occluded within the crystal. In summary, the surface roughness of the biomineral surface reflects the complex shape of the crystallization front, and the biphase structure provides evidence for crystallization from an amorphous precursor. The surface roughness is generally explained as resulting from the attachment of ACC particles to the crystal surface, which later crystallised in concordance with the crystal lattice. If this was the case, the nanoprotrusions do not reflect the size and shape of any precursor particle. Accordingly, the particle attachment model for biomineral formation should seek new evidence.


Assuntos
Carbonato de Cálcio/química , Thoracica/metabolismo , Animais , Propriedades de Superfície
5.
Proc Natl Acad Sci U S A ; 117(25): 14102-14109, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32522867

RESUMO

The spatial-temporal relationship between cells, extracellular matrices, and mineral deposits is fundamental for an improved understanding of mineralization mechanisms in vertebrate tissues. By utilizing focused ion beam-scanning electron microscopy with serial surface imaging, normally mineralizing avian tendons have been studied with nanometer resolution in three dimensions with volumes exceeding tens of micrometers in range. These parameters are necessary to yield sufficiently fine ultrastructural details while providing a comprehensive overview of the interrelationships between the tissue structural constituents. Investigation reveals a complex lacuno-canalicular network in highly mineralized tendon regions, where ∼100 nm diameter canaliculi emanating from cell (tenocyte) lacunae surround extracellular collagen fibril bundles. Canaliculi are linked to smaller channels of ∼40 nm diameter, occupying spaces between fibrils. Close to the tendon mineralization front, calcium-rich deposits appear between the fibrils and, with time, mineral propagates along and within them. These close associations between tenocytes, tenocyte lacunae, canaliculi, small channels, collagen, and mineral suggest a concept for the mineralization process, where ions and/or mineral precursors may be transported through spaces between fibrils before they crystallize along the surface of and within the fibrils.


Assuntos
Biomineralização , Matriz Extracelular/ultraestrutura , Tendões/ultraestrutura , Tenócitos/ultraestrutura , Animais , Cálcio/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Imageamento Tridimensional , Extremidade Inferior/diagnóstico por imagem , Masculino , Tenócitos/metabolismo , Perus
6.
Nat Commun ; 11(1): 1696, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235832

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Nat Commun ; 11(1): 862, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054841

RESUMO

Complex hierarchical structure governs emergent properties in biopolymeric materials; yet, the material processing involved remains poorly understood. Here, we investigated the multi-scale structure and composition of the mussel byssus cuticle before, during and after formation to gain insight into the processing of this hard, yet extensible metal cross-linked protein composite. Our findings reveal that the granular substructure crucial to the cuticle's function as a wear-resistant coating of an extensible polymer fiber is pre-organized in condensed liquid phase secretory vesicles. These are phase-separated into DOPA-rich proto-granules enveloped in a sulfur-rich proto-matrix which fuses during secretion, forming the sub-structure of the cuticle. Metal ions are added subsequently in a site-specific way, with iron contained in the sulfur-rich matrix and vanadium coordinated by DOPA-catechol in the granule. We posit that this hierarchical structure self-organizes via phase separation of specific amphiphilic proteins within secretory vesicles, resulting in a meso-scale structuring that governs cuticle function.


Assuntos
Materiais Revestidos Biocompatíveis/química , Metaloproteínas/química , Mytilus edulis/química , Estruturas Animais/anatomia & histologia , Estruturas Animais/química , Estruturas Animais/ultraestrutura , Animais , Di-Hidroxifenilalanina/química , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mytilus edulis/anatomia & histologia , Mytilus edulis/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Vesículas Secretórias/química , Vesículas Secretórias/ultraestrutura
8.
J Phys Chem Lett ; 10(18): 5514-5518, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31408354

RESUMO

Control over particle size, size distribution, and colloidal stability are central aims in producing functional nanomaterials. Recently, biomimetic approaches have been successfully used to enhance control over properties in the synthesis of those materials. Magnetotactic bacteria produce protein-stabilized magnetite away from its thermodynamic equilibrium structure. Mimicking the bacteria's proteins using poly-l-arginine we show that by simply increasing the pH, the dimensions of magnetite increase and a single- to mesocrystal transformation is induced. Using synchrotron X-ray diffraction and transmission electron microscopy, we show that magnetite nanoparticles with narrow size distributions and average diameters of 10 ± 2 nm for pH 9, 20 ± 2 nm for pH 10, and up to 40 ± 4 nm for pH 11 can be synthesized. We thus selectively produce superparamagnetic and stable single-domain particles merely by controlling the pH. Remarkably, while an increase in pH brings about a thermodynamically driven decrease in size for magnetite without additives, this dependency on pH is inverted when poly-l-arginine is present.

9.
Front Med (Lausanne) ; 6: 123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31245375

RESUMO

Magnetic iron oxide nanoparticles, magnetite/maghemite, have been identified in human tissues, including the brain, meninges, heart, liver, and spleen. As these nanoparticles may play a role in the pathogenesis of neurodegenerative diseases, a pilot study explored the occurrence of these particles in the cervical (neck) skin of 10 patients with Parkinson's disease and 10 healthy controls. Magnetometry and transmission electron microscopy analyses revealed magnetite/maghemite nanoparticles in the skin samples of every study participant. Regarding magnetite/maghemite concentrations of the single-domain particles, no significant between-group difference was emerged. In low-temperature magnetic measurement, a magnetic anomaly at ~50 K was evident mainly in the dermal samples of the Parkinson group. This anomaly was larger than the effect related to the magnetic ordering of molecular oxygen. The temperature range of the anomaly, and the size-range of magnetite/maghemite, both refute the idea of magnetic ordering of any iron phase other than magnetite. We propose that the explanation for the finding is interaction between clusters of superparamagnetic and single-domain-sized nanoparticles. The source and significance of these particles remains speculative.

10.
Soft Matter ; 14(27): 5654-5664, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29946583

RESUMO

Numerous mussel species produce byssal threads - tough proteinaceous fibers, which anchor mussels in aquatic habitats. Byssal threads from Mytilus species, which are comprised of modified collagen proteins - have become a veritable archetype for bio-inspired polymers due to their self-healing properties. However, threads from different species are comparatively much less understood. In particular, the byssus of Pinna nobilis comprises thousands of fine fibers utilized by humans for millennia to fashion lightweight golden fabrics known as sea silk. P. nobilis is very different from Mytilus from an ecological, morphological and evolutionary point of view and it stands to reason that the structure-function relationships of its byssus are distinct. Here, we performed compositional analysis, X-ray diffraction (XRD) and transmission electron microscopy (TEM) to investigate byssal threads of P. nobilis, as well as a closely related bivalve species (Atrina pectinata) and a distantly related one (Pinctada fucata). This comparative investigation revealed that all three threads share a similar molecular superstructure comprised of globular proteins organized helically into nanofibrils, which is completely distinct from the Mytilus thread ultrastructure, and more akin to the supramolecular organization of bacterial pili and F-actin. This unexpected discovery hints at a possible divergence in byssus evolution in Pinnidae mussels, perhaps related to selective pressures in their respective ecological niches.


Assuntos
Bivalves/química , Seda/química , Animais , Biomimética , Agregados Proteicos
11.
Sci Rep ; 7(1): 12728, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983081

RESUMO

Currently a basic tenet in biomineralization is that biominerals grow by accretion of amorphous particles, which are later transformed into the corresponding mineral phase. The globular nanostructure of most biominerals is taken as evidence of this. Nevertheless, little is known as to how the amorphous-to-crystalline transformation takes place. To gain insight into this process, we have made a high-resolution study (by means of transmission electron microscopy and other associated techniques) of immature tablets of nacre of the gastropod Phorcus turbinatus, where the proportion of amorphous calcium carbonate is high. Tablets displayed a characteristic nanoglobular structure, with the nanoglobules consisting of an aragonite core surrounded by amorphous calcium carbonate together with organic macromolecules. The changes in composition from the amorphous to the crystalline phase indicate that there was a higher content of organic molecules within the former phase. Within single tablets, the crystalline cores were largely co-oriented. According to their outlines, the internal transformation front of the tablets took on a complex digitiform shape, with the individual fingers constituting the crystalline cores of nanogranules. We propose that the final nanogranular structure observed is produced during the transformation of ACC into aragonite.

12.
Proc Math Phys Eng Sci ; 472(2195): 20160466, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27956875

RESUMO

Rio Tinto in southern Spain has become of increasing astrobiological significance, in particular for its similarity to environments on early Mars. We present evidence of tubular structures from sampled terraces in the stream bed at the source of the river, as well as ancient, now dry, terraces. This is the first reported finding of tubular structures in this particular environment. We propose that some of these structures could be formed through self-assembly via an abiotic mechanism involving templated precipitation around a fluid jet, a similar mechanism to that commonly found in so-called chemical gardens. Laboratory experiments simulating the formation of self-assembling iron oxyhydroxide tubes via chemical garden/chemobrionic processes form similar structures. Fluid-mechanical scaling analysis demonstrates that the proposed mechanism is plausible. Although the formation of tube structures is not itself a biosignature, the iron mineral oxidation gradients across the tube walls in laboratory and field examples may yield information about energy gradients and potentially habitable environments.

13.
Sci Rep ; 6: 25989, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27181457

RESUMO

The Cavolinioidea are planktonic gastropods which construct their shells with the so-called aragonitic helical fibrous microstructure, consisting of a highly ordered arrangement of helically coiled interlocking continuous crystalline aragonite fibres. Our study reveals that, despite the high and continuous degree of interlocking between fibres, every fibre has a differentiated organic-rich thin external band, which is never invaded by neighbouring fibres. In this way, fibres avoid extinction. These intra-fibre organic-rich bands appear on the growth surface of the shell as minuscule elevations, which have to be secreted differentially by the outer mantle cells. We propose that, as the shell thickens during mineralization, fibre secretion proceeds by a mechanism of contact recognition and displacement of the tips along circular trajectories by the cells of the outer mantle surface. Given the sizes of the tips, this mechanism has to operate at the subcellular level. Accordingly, the fabrication of the helical microstructure is under strict biological control. This mechanism of fibre-by-fibre fabrication by the mantle cells is unlike that any other shell microstructure.


Assuntos
Exoesqueleto/química , Carbonato de Cálcio/química , Gastrópodes/fisiologia , Modelos Moleculares , Nácar/química , Exoesqueleto/ultraestrutura , Animais , Cristalização , Microscopia Eletrônica de Varredura , Estrutura Molecular , Plâncton
14.
Proc Biol Sci ; 283(1830)2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27147096

RESUMO

The degree to which biological control is exercised compared to physical control of the organization of biogenic materials is a central theme in biomineralization. We show that the outlines of biogenic calcite domains with organic membranes are always of simple geometries, while without they are much more complex. Moreover, the mineral prisms enclosed within the organic membranes are frequently polycrystalline. In the prismatic layer of the mollusc shell, organic membranes display a dynamics in accordance with the von Neumann-Mullins and Lewis Laws for two-dimensional foam, emulsion and grain growth. Taken together with the facts that we found instances in which the crystals do not obey such laws, and that the same organic membrane pattern can be found even without the mineral infilling, our work indicates that it is the membranes, not the mineral prisms, that control the pattern, and the mineral enclosed within the organic membranes passively adjusts to the dynamics dictated by the latter.


Assuntos
Exoesqueleto/anatomia & histologia , Exoesqueleto/química , Bivalves/anatomia & histologia , Animais , Bivalves/química , Bivalves/fisiologia , Carbonato de Cálcio/química , Microscopia Eletrônica de Varredura , Termogravimetria
15.
PLoS One ; 9(10): e107412, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25272009

RESUMO

Natural selection penalizes individuals that provide costly parental care to non-relatives. However, feedings to brood-parasitic fledglings by individuals other than their foster parents, although anecdotic, have been commonly observed, also in the great spotted cuckoo (Clamator glandarius)--magpie (Pica pica) system, but this behaviour has never been studied in depth. In a first experiment, we here show that great spotted cuckoo fledglings that were translocated to a distant territory managed to survive. This implies that obtaining food from foreign magpies is a frequent and efficient strategy used by great spotted cuckoo fledglings. A second experiment, in which we presented a stuffed-cuckoo fledgling in magpie territories, showed that adult magpies caring for magpie fledglings responded aggressively in most of the trials and never tried to feed the stuffed cuckoo, whereas magpies that were caring for cuckoo fledglings reacted rarely with aggressive behavior and were sometimes disposed to feed the stuffed cuckoo. In a third experiment we observed feedings to post-fledgling cuckoos by marked adult magpies belonging to four different possibilities with respect to breeding status (i.e. composition of the brood: only cuckoos, only magpies, mixed, or failed breeding attempt). All non-parental feeding events to cuckoos were provided by magpies that were caring only for cuckoo fledglings. These results strongly support the conclusion that cuckoo fledglings that abandon their foster parents get fed by other adult magpies that are currently caring for other cuckoo fledglings. These findings are crucial to understand the co-evolutionary arms race between brood parasites and their hosts because they show that the presence of the host's own nestlings for comparison is likely a key clue to favour the evolution of fledgling discrimination and provide new insights on several relevant points such as learning mechanisms and multiparasitism.


Assuntos
Aves , Comportamento Alimentar , Comportamento de Nidação , Animais , Feminino , Masculino
16.
J Struct Biol ; 183(3): 368-376, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23933391

RESUMO

Nacre tablets of mollusks develop two kinds of features when either the calcium carbonate or the organic portions are removed: (1) parallel lineations (vermiculations) formed by elongated carbonate rods, and (2) hourglass patterns, which appear in high relief when etched or in low relief if bleached. In untreated tablets, SEM and AFM data show that vermiculations correspond to aligned and fused aragonite nanogloblules, which are partly surrounded by thin organic pellicles. EBSD mapping of the surfaces of tablets indicates that the vermiculations are invariably parallel to the crystallographic a-axis of aragonite and that the triangles are aligned with the b-axis and correspond to the advance of the {010} faces during the growth of the tablet. According to our interpretation, the vermiculations appear because organic molecules during growth are expelled from the a-axis, where the Ca-CO3 bonds are the shortest. In this way, the subunits forming nacre merge uninterruptedly, forming chains parallel to the a-axis, whereas the organic molecules are expelled to the sides of these chains. Hourglass patterns would be produced by preferential adsorption of organic molecules along the {010}, as compared to the {100} faces. A model is presented for the nanostructure of nacre tablets. SEM and EBSD data also show the existence within the tablets of nanocrystalline units, which are twinned on {110} with the rest of the tablet. Our study shows that the growth dynamics of nacre tablets (and bioaragonite in general) results from the interaction at two different and mutually related levels: tablets and nanogranules.


Assuntos
Bivalves/ultraestrutura , Nácar/química , Animais , Bivalves/metabolismo , Cristalização , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nácar/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...